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Almost Sure Quasilocality Fails for the 
Random-Cluster Model on a Tree 
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We study the random-cluster model on a homogeneous tree, and show that the 
following three conditions are equivalent for a random-cluster measure: quasiloca- 
lity, almost sure quasilocality, and the almost sure nonexistence of infinite 
clusters. As a consequence of this, we find that the plus measure for the Ising 
model on a tree at sufficiently low temperatures can be mapped, via a local sto- 
chastic transformation, into a measure which fails to be almost surely quasilocal. 

KEY WORDS: Random-cluster model; quasilocality; almost sure quasi- 
locality; tree; Gibbs measure; Ising model. 

1. I N T R O D U C T I O N  

The concept  of  a lmos t  sure quas i loca l i ty  has  recently received a con-  
s iderable  a m o u n t  of  a t t en t ion  in s tat is t ical  mechanics .  The  reason for this 
is that  it has become increasingly a p p a r e n t  tha t  many  systems of  physical  
interest  fail to be quasi local ,  see, e.g., refs. 12, 20, 6, 7, 5, and  4. In  par -  
t icular,  the class of  G ibbs  measures  is not  closed under  var ious  renor-  
mal iza t ion  t rans format ions ,  and  m a n y  examples  where quasi local i ty  fails 
for the renormal ized  systems can be found in the above  references. This 
behav ior  is in general  undes i rable ,  and  therefore such renormal iza t ions  are  
often descr ibed as "pa tho logica l . "  This  state of  affairs makes  it na tu ra l  to 
try to find some useful weaken ing  of  the concept  of  a G i b b s  measure ,  and  
one such approach ,  suggested by Fern /mdez  and Pfister, 19) is to replace the 
condi t ion  of  quas i loca l i ty  by the weaker  no t ion  of  a lmos t  sure quas i loca l i ty  
(see also refs. 19, 17, and  8). 

The  pu rpose  of  this note  is to show that ,  in general ,  even this weaker  
cond i t ion  fails for the r andom-c lus t e r  mode l  on an infinite homogeneous  
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tree of order n >~ 2, studied in ref. 15. In the case of the random-cluster 
model on Z a, almost sure quasilocality was shown (at least for translation- 
invariant random-cluster measures) by Grimmett ~4~ and Pfister and Vande 
Velde.~9~ Hence, this note may be viewed as a contribution to the tradition 
of showing that a random process on Z a which behaves well, in some 
specified sense, fails to do so when Z a is replaced by a tree; see, e.g., 
refs. 21, 18, 2, and 15. 

Our results imply the existence of a local transformation of the Ising 
model on a tree at low temperature which is pathological in a rather strong 
sense, in that it brings the system not only outside of the class of quasilocal 
systems, but also outside of the class of almost surely quasilocal systems. 
Moreover, we find that this transformation applied to two different Gibbs 
measures v I and v+ for the same potential can lead to a quasilocal measure 
for v I and a nonquasilocal (not even almost surely quasilocal) measure 
f o r  v + .  

Another example of a transformation which brings a Gibbsian system 
outside of the class of almost surely quasilocal systems was recently given 
by van Enter and L6rinczi 181 (building on work by L6rinczi and Vande 
Velde). 1161 Their example is a variant of Schonmann's ~2~ projected Ising 
model. 

The random-cluster model is defined in Section 2. In Section 3, we give 
the definitions of quasilocality, resp. almost sure quasilocality, and state 
and prove the main result, which characterizes which random-cluster 
measures have the almost sure quasilocality property. In Section 4, we dis- 
cuss the relation with the Ising model and, in particular, describe the trans- 
formation which takes the Ising model to the random-cluster model and 
which has the pathological behavior described above. 

2. THE R A N D O M - C L U S T E R  MODEL 

The random-cluster model (see refs. 10, 1, 3, and 13 for further back- 
ground) with parameters is p ~ [0, 1] and q > 0 is easiest to define on a 
finite graph G with vertex set V and edge set E. By a subgraph of G we 
mean a graph with the same vertex set V as G and an edge set which is a 
subset of E. Such a subgraph is identified with an element of { 0, 1 } E, where 
a 1 indicates that an edge is present and a 0 indicates that it is absent. 

Defini t ion 2.1. The random-cluster  measure  i ~  q for G with 
parameters p and q is the probability measure on the set of subgraphs of 
G given by 
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Definition 2.2. 
dom-cluster measure 
probabilities satisfy 

for all r/~ {0, 1} e. Here k(r/) is the number of connected components of r/ 
and 

Z~ q= Z f H Pq(e'(l--p)l-"(e)}q k(~' 
i1~{0,  1} e t-colE 

is a normalizing constant. 

Let T,, be the homogeneous tree of order n, i.e., T,, is the (unique) 
infinite graph which is connected, has no circuits, and has n + 1 branches 
emanating from every vertex. We will always assume that n >/2; the tree 
obtained with n = 1 is simply the nearest neighbor graph on Z, and our 
results do not apply to this case. Write V,, and E, for the vertex set and 
the edge set, respectively, of T,,. 

Note that Definition 2.1 is not applicable to infinite graphs like T,,, 
because the number of connected components (clusters) will in general be 
infinite. Instead, the following definition, analogous to the Dobrushin- 
Lanford-Ruelle definition of a Gibbs measure, was given in ref. 15. Given 
A c E,,, define A' c V, to be the set { v E V,,: 3e ~ A such that e is incident 
to v}. For a configuration ~ {0, 1} E,\A, let 

/t A. r = ~ (l _ p ) l  (1) 

for all q~{O, 1} A, where k(r/, ~) is the number of finite connected com- 
ponents which intersect fl ' in the configuration which agrees with r /on A 
and with ~ on En\A, and Z~?~ of course again is the right normalizing 
constant. 

A probality measure ~t on {0, 1} e,, is called a ran- 
with parameters p and q if its conditional 

P,q for all finite A c E , , ,  all t /e {0, 1} A, and p-a.e. ~e  {0, 1} E,XA. Here i~a,e(tl) 
is given by (1). 

This is slightly different from the definition in ref. 14 of a random- 
cluster measure for Z d, the difference being that k(r/, ~) counts only the 
finite connected components intersecting A', rather than all connected com- 
ponents intersecting A'. One may ask why we use this modified way of 
counting connected components on a tree, and there are three answers to 
this question: 
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1. It is believed that the number  of infinite clusters a.s. is either 0 or 
1 for the random-cluster model on Z a (this is certainly the case if we 
restrict to translation invariant measures; see ref. 14). If this is true, then it 
is easy to see that it would lead to an equivalent definition on Z a to count 
finite clusters rather than all clusters. Also, the two ways of counting 
clusters are (trivially) the same on a finite graph. 

2. On a tree, the absence of circuits implies that adding an edge 
always reduces the number of clusters by exactly 1. Therefore an edge 
e E E,, would be present with probality p(p +(1  - p ) q ) -  l independently of 
all other edges if k(r/, ~) were to count all clusters, so that the random- 
cluster model would be nothing more than a complicated way of defining 
i.i.d, measure on {0, 1} '~" 

3. The random-cluster model on T,, as we define it, with q = 2, is 
intimately related to the Ising model on T,, with the 'plus' boundary condi- 
tion. A similar statement holds for the Potts model with q ~ {3, 4,...}. This 
relation was not discussed explicitly in ref. 15, so we will do so in Section 4. 
(To be fair, we should also mention that the alternative definition of the 
random cluster on T,, bears the same relation to the Ising/Potts models 
with the 'free' boundary condition.) 

We refer to ref. 15 for further discussion and results on this model. 

3. M A I N  RESULT 

Let A be a finite set, S a countable set, and le t /2  = A s (below, we will 
take A = { 0 ,  1} and S=E, , ) .  For  A ~ S  and co~/2, write co~ ~A A for co 
restricted to A. We say that a function g on /2 is quasilocal at the point 

e /2  if for any e > 0 there exists a finite set At c S such that 

sup I g ( ~ ) - g ( ~ ' ) l  < e  
,~': ~f~ = ~l~ 

D e f i n i t i o n  3.1. A probability measure P is said to be quasilocal if 
for any finite A ~ S it admits a conditional distribution P(.  I' ) of the con- 
figuration on A given the configuration on S \ A  such that for any r/~ A A 
and any ~ ~/2 the function 

P(r/I ~s\A) 

is quasilocal at ~. We say that P is almost surely quasilocal if it admits a 
conditional distribution such that this holds for all r/~ A A and P-a.e. ~ ~/2. 

Note that quasilocality implies almost sure quasilocality. An i.i.d. 
measure on /2 is obviously quasilocal, whence a random-cluster measure 
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for T,, whose parameters satisfy either p E { 0, 1 } or q = I is quasilocal. For 
other parameter values, the situation is described in the following theorem, 
which is our main result. 

T h e o r e m  3.2. Let p be a probability measure on {0, 1} E', and 
suppose that p is a random-cluster measure with parameters p e (0, 1) and 
q 4: 1. Let C be the event that these exists at least one infinite cluster. Then 
the following three conditions are equivalent. 

(i) /X(C) = 0 

(ii) /X is quasilocal. 

(iii) /X is almost surely quasilocal. 

Some results on whether a given random-cluster measure assigns 
positive probability to the existence of infinite clusters are given in ref. 15 
(see also Section 4). In fact, for certain values of the parameters p and q, 
these exists both a random-cluster measure which assigns probability 0 
to the existence of infinite clusters and one for which this event has 
probability 1. 

Proof of  Theorem 3.2. Since quasilocality implies almost sure 
quasilocality, it suffices to show ( i ) ~  (ii) and ( i i i )~  (i). We pick an edge 
e ~ E,, and consider the conditional probability/x(e is present [~E,,\/e}). Let 
C* be the event that both endvertices of e have paths to infinity that do 
not use e. It is immediate from Definition 2.2 that/x-a.s. 

p on Ce* 

p(e is present [~E,,\{e})= p on ~ C *  (2) 
+ ( 1 - p ) q  

(the complement of an event A is denoted ~A) .  Note that p:/: 
p(p + (1- -p)  q)-~ by the assumptions of the theorem. 

In order to prove (i) =:- (ii), suppose that p(C) = 0. Clearly -q C implies 
~ C *  for any e. Hence, by (2), each edge e is present with probability 
p(p + ( 1 - p) q) -~ independently of everything else, so/X is simply an i.i.d. 
measure on {0, 1 } E,,, whence it is quasilocal. 

To prove. (iii)=~ (i), we will show that/X(C) > 0 implies that p cannot 
be almost surely quasilocal. Suppose first that/X(C*) has positive probabil- 
ity for some e. For any finite A containing e and any ~ e C*, it is possible 
to find a larger, but finite, edge set A ' ~  A such that by erasing all edges 
of ~ in A ' \ A  we obtain a configuration which is not in C* (just take A' to 
consist of A plus the edges of E,, \A that are adjacent to A). It follows from 
Definition 2.2 that every configuration on A' has positive/x-probability; in 
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particular, this holds for the configuration which agrees with ~ on A and 
which is identically zero on A'\A. Hence It(e is present [~E,\{e}), viewed 
as a function of ~, cannot be quasilocal for any version of the conditional 
probabilities It(-[. ), and moreover It cannot be almost surely quasilocal. 

It remains to show that I t ( C ) > 0  implies that I t (C*)>0  for some 
e ~ E,,. Designate some vertex v ~ V,, to be the root of T,,, and write Ak for 
the set of edges having both endvertices within distance k from the root. 
Also write g for and end of T,,; by an end we mean an infinite self-avoiding 
path starting at the root. For a given ~ e { 0, 1 } E,, call an end g open if all 
but at most finitely many edges in ~ are present in ~. Let C* denote the 
event that there exist at least two different open ends. We now claim that 

It(C) > 0 ~ i t ( C * )  > 0 (3) 

or equivalently that p(C*)= 0 implies It(C)= 0. To show this, suppose that 
It(C*) = 0. Then (2) implies that It is i.i.d, measure with edge probability 
p(p +(1 - p ) q ) - ~ .  By Kolmogorov's 0-1 law, the number of open ends is 
then an almost sure constant c. A simple branching process comparison 
shows that 

{0c~ if np/[p+(1-p)  q]<~ l 
c = otherwise 

so that in the former case we have that I t (C)=  0 and in the latter case we 
have a contradiction to the assumption that I t (C* )=  0. Hence (3) is estab- 
lished. [With slightly more work, one can show the stronger fact that 
#(C*) =p(C) ,  but we do not need this.] 

Next, we observe that p(C*)> 0 implies that the existence of a doubly 
infinite path in ~ has positive probability (to see this, pick k so large that 
with positive probability there are two open ends which are disjoint outside 
Ak and whose edges in E,,\Ak are all present, and note that they connect 
via Ak with positive probability). The existence of a doubly infinite path in 

in turn implies that C* occurs for some e. Putting things together, we 
have 

p(C) > 0 ~it(C*) > 0 ~ 3e such that It(C*) > 0 

so the proof  is complete. | 

Remark. In the proof of ( i ) ~  (ii), the specification of It(. [.) which 
we implicitly use to show quasilocality is that the edges on a finite set A 
are i.i.d, with edge probability p(p+ ( 1 - p )  q)-~, regardless of the con- 
figuration on E,,\A. This is different from the specification in (1), which 
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defines a random-c lus te r  measure  (of  course, these specifications differ only 
on a set o f / t -measu re  0). The specification in (1) is not  quasilocal,  but  we 
could have used it if we were content  with showing (i)=~ (iii). 

4. RELATION WITH THE ISING MODEL 

In this section, we show how a certain random-clus te r  measure  for T,, 
can be obta ined  by a simple stochastic t ransformat ion  of  the "plus" 
measure  for the Ising model  on T , .  The  same thing can of  course  also be 
done for the "minus"  measure,  and also for the q ordered states of  the Pot ts  
model  with q/> 3. We restrict considerat ion to the Ising model  for sim- 
plicity and because it suffices for our  purpose,  which is to give an example  
of  a local t rans format ion  of  a Gibbs  measure  which results in a measure  
which fails to be a lmost  surely quasilocal.  

The Ising model  (see ref. 11 for a general t rea tment )  with reciprocal 
t empera ture  fl > 0 on a finite g raph  G with vertex set V and edge set E is 
defined as follows. A configurat ion co ~ { - 1, 1 } c has energy 

H(ro)=--fl ~, co(x) co(y) 
<x, y> 

where the sum is taken over  all pairs of  vertices x and y that  have an edge 
connect ing them. The Gibbs  measure  v~ on { - 1 ,  1} ~ for the Ising model  
at t empera tu re  fl-1 is the probabi l i ty  measure  for which 

1 
vg(cO)=z---~exp{ -H(w)}  

for all (o a { - 1, 1 } a. Here  Z ~  is a normal iz ing constant.  Replacing G by 
the infinite g raph  T,,, we need to define Gibbs  measures  in terms of  condi-  
tional probabili t ies.  We call a measure  v on { - 1, 1 } v, a Gibbs  measure  for 
the Ising model  at t empera tu re  f l - i  if for any finite set L c V,,, any 
(,J e { - I, 1 } L, and v-a.e, co' 6 { - 1, I} v,,,/_ we have 

1 
v(wlco') = ~  exp{ - n ( w ,  co')} (4) 

where Z~,,o. is again the appropr ia te  normal iz ing constant ,  and 

H(co, co') = - ~ coix) co'(),) 
(x,  y)  

where this t ime the sum is taken over  all pairs of  vertices (xaL,  yEV, , )  
that have an edge connect ing them. Let L k c V,, be the set of  vertices 

822/84/5-6-31 
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within distance k -  1 from the root, and define vP+.k to be the probability 
measure on { -  1, 1 } v,, which assigns probability I to the configuration 
co+ = 1 on V , , \ L  k, and whose projection on Lk is given by (4) with 
co'= co+. It is well known that the measure 

v~ = lim vP+.k (5) 
k ~ o v  

exists and is a Gibbs measure. 
There is an analogous measure for the random-cluster model. As 

before, let A k  c E,, be the set of edges that have both endvertices within 
distance k from the root. Given the parameters p e (0, 1 ) and q ~> 1, let ,,P" q t "~ l , k  

be the measure on { O, 1 } E. which assigns probability 1 to the configuration 
~ - 1  on E , , \ A k  and whose projection on A k  is Pm-.P'q~," The limiting 
measure 

It ~'" q lim P" q = /zl. k (6) 

exists and is a random-cluster measureJ ~5~ We may think of l l f  'q a s  

obtained with "wired" boundary conditions, because the way we count 
connected components for ltP'l.k q is equivalent to viewing everything outside 
Ak as a single connected component. 

Proposition 4.1 below gives a relation between vP+ and It ~" q analogous 
to the Edwards-Sokal coupling of the corresponding measures v~ and ItS" q 
for finite graphs. 13"131 Let p~  be the probability measure on {0, 1} E" 
obtained as follows. First, pick a configuration co e { - 1, 1 } v,, according to 
v~. Conditional on 09, assign each edge e ~ E,, with endvertices x, y ~ V,, 
value 1 with probability 

O(e, co) = {p if otherwise c o ( x ) = c o ( y )  

and value 0 with probability 1 -0 (e ,  co), and do this independently for 
each e. 

Proposition 4.1. T a c k i n g q = 2 a n d p = l - e  - , w e h a v e  

PP+ =l'f'" 

For q = 2 , 1 t  p'q assigns positive probability to the existence of infinite 
clusters iffp > 2(n + 1 )-1 (see ref. 15; in fact, it then assigns probability one 
to the existence of infinitely many infinite clusters). By Theorem 3.2, we 
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thus have a local stochastic transformation for vP+ with the pathological 
behavior described above, whenever 

1 ( n +  1"~ 
f l > ~  log \ n -  1,/ 

Proof Let P~, be the probability measure on { - 1 ,  1}V"x{0, 1} E" 
obtained as follows. Each vertex v ~ V,, takes value 1 with probability 

�89 if v e  L k 
otherwise 

each edge e ~ E,, takes value 1 with probability 

1 if eEA k 
otherwise 

and this is done independently for all vertices and edges. Next, let the prob- 
ability measure Pk be equal to P~. conditioned on the event that no two 
vertices with different values have an edge connecting them. It is now easy 
to check that the marginals of Pk on { -- 1, 1 } v, and { 0, 1 } E, are VP+.k and 
llLk,P'q respectively. [This is in fact exactly the Edwards-Sokal coupling of 
v~. and ~t~ 'q, where G is the finite graph with vertex set Lkw {v*} and edge 
set Ak, conditioned on the event that v* takes value 1. Here v* is the vertex 
obtained by collapsing all vertices of V,,\Lk into a single vertex.] It is 
immediate from the construction of P~. that, conditional on co ~ { 0, 1 } v,, 
each edge e EAk is present with probability 0(e, ~o) independently of all 
other edges. This observation, together with (5) and (6), implies that 

P = lim Pk 
k ~ c r  

exists and has marginals vP+ and/--l"'P'q-17fl-/-, + '  | 

We now consider another Gibbs measure vf p for the Ising model at the 
same temperature f l - i .  We obtain it with "free" boundary conditions, in 
the following way. Define the probability measure v.~ k on { -  1, 1} v, 
arbitrarily on" V,,\Lk, and let it be given by vPa on Lk, where G here is the 
graph with vertex set Lk and edge set A~_ ~. As in (5), the limiting measure 

v p -  lim v p f - -  .f, k 

exists and is a Gibbs measure. It is well known that both v~ and vP+ are 
invariant under graph automorphisms of T..  
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Now let/~fP be the measure on {0, 1} E, obtained from v~ in the same 
way as pP+ was obtained from vP+. It turns out that pfP is simply i.i.d. 
measure with edge probability p(p+ ( 1 - p )  q)-~; the proof of this goes 
exactly as the proof of Proposition 4.1. For 

fl~<~ 117+ IXx l~ 1) 

the measures v~ and v/~+ coincide, but for 

1 / n +  1"~ 
fl > ~ l~ ~n--~,  ) 

what we have is a local stochastic transformation which, applied to the two 
automorphism-invariant Gibbs measures v~ and v~ defined for the same 
potential, gives a quasilocal measure (/~r p) in one case and a nonquasilocal 
measure (fi~) in the other. It follows from Theorem 3.4 in ref. 7 that no 
such monkey business can happen on Z a. 
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